ROLE OF SUGARCANE RESEARCH INSTITUTE FAISALABAD IN ADDRESSING FUTURE THREATS

(Psst 48th. Convention 8-9 September 2014)

By:

DR. MUHAMMAD AFZAL

SUGARCANE SPECIALIST SUGARCANE RESEARCH INSTITUTE FAISALABAD

OBJECTIVES

Variety Evolution	 Better Cane Yield High Sugar Production Good Ratoon Tolerance to Biotic & Abiotic Stresses
SRI Cane Technology	 Production Technology Enhancing WUE & FUE Ratoon Management Harvesting & Post-Harvest Losses Cane By-products
Disease & Insect Pests	 Screening against Diseases Screening against Insect-pest Control measures & IPM

CURRENT STATUS OF SRI

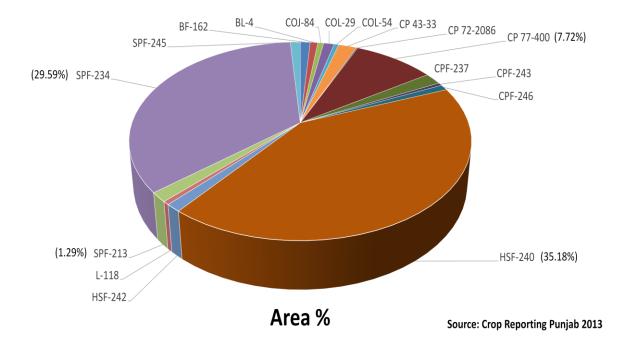
SUGARCANE IN PAKISTAN 2012-13 vs. 2013-14

Provinces	Su	Sugarcane area (000 ha)		Sugarcane production (M.T.)		Sugarcane yield (t ha ^{.1})			Sugar recover y	
	2012-13	2013-14	Change %	2012-13	2013-14	Change %	2012-13	2013-14	Change %	(%)
Punjab	767.7	723.6	-5.7	42.98	40.84	-4.97	56.0	56.4	0.8	9.92
Sindh	253.7	297.6	17.30	15.96	17.37	8.80	62.9	58.4	-7.2	10.49
КРК	106.7	107.7	0.9	4.77	4.82	1.1	44.7	44.8	0.2	9.23
Baluchist an	0.7	0.7	0.7	0.31	0.32	2.2	45.0	46.0	2.2	
Pakistan	1128.8	1129.6	0.1	63.75	63.07	-1.1	56.5	55.8	-1.1	9.88

Source: Ministry of National Food Security & Research & PSMA

2013

SUGARCANE IN PAKISTAN 2012-13 vs. 2013-14


Provinces	Sugarcane area (000 ha)		Sugarcane production (M.T.)		Sugarcane yield (t ha ⁻¹)			Sugar recover y		
	2012-13	2013-14	Change %	2012-13	2013-14	Change %	2012-13	2013-14	Change %	(%)
Punjab	767.7	723.6	-5.7	42.98	40.84	-4.97	56.0	56.4	0.8	9.92
Sindh	253.7	297.6	17.30	15.96	17.37	8.80	62.9	58.4	-7.2	10.49
КРК	106.7	107.7	0.9	4.77	4.82	1.1	44.7	44.8	0.2	9.23
Baluchist an	0.7	0.7	0.7	0.31	0.32	2.2	45.0	46.0	2.2	
Pakistan	1128.8	1129.6	0.1	63.75	63.07	-1.1	56.5	55.8	-1.1	9.88

Source: Ministry of National Food Security & Research & PSMA 2013

AREA UNDER SRI VARIETIES

- **Punjab = 99%**
- Sindh = 60%
 - KPK = 95%

SUGARCANE PRODUCERS IN ASIA

#	Country	Area (000 ha)	Production (000 t)	Yield (t ha ⁻¹)	Crop Duration (Months)	Stripped Cane Yield/Unit time
1	Philippine	433	30000	69.24	18	69.24
2	India	5090	347870	68.34	12-18	68.34
3	Sri-Lanka	13	800	63.49	18	63.49
4	Indonesia	458	26342	57.68	18	57.68
5	Pakistan	1046	58038	55.49	10-15	79.91
6	Lao DPR	21	1056	51.52	18	51.52
7	Nepal	65	2930	45.45	18	45.45
8	Bangladesh	118	4850	41.10	18	41.10
9	Cambodia	17	365	21.47	18	21.47
	Ranking	2	2	5	-	1

Source: Ministry of National Food Security & Research 2013

SUCCESS STORY OF VARIETY EVOLUTION AT SRI

International collaboration:

- ✓ Varieties of CP origin like CPF-246, CPF-247, CPF-248 are very successful in Pakistan, fuzz imported from U.S.A.
- ✓ Varieties like CP77-400, CP72-2086 & CP43-33 were directly imported from U.S.A.
- ✓ Varieties of SP origin like SPF-213 is successful in all Punjab and SPF-234, a good performers in Southern Punjab, fuzz imported from Brazil
- ✓ Several advance lines of SRI, Faisalabad belong to germplasm imported from U.S.A. and Australia

National collaboration:

 ✓ HSF-240 and HSF-242 are joint collaborative effort of Habib Sugar Mills and SRI Faisalabad

PROMISING VARIETIES OF SRI, FSD

Sr. #	Varieties	Year of Release	Av. Yield (t ha ⁻¹)	Sugar Recovery (%)	Sugar Yield (t ha⁻¹)
1.	SPF-213	2000	90	10.50	9.45
2.	HSF-240	2002	95	11.70	11.11
3.	SPF-234	2002	100	11.60	11.60
4.	CPF-246	2011	105	12.00	12.60
5.	CPF-247	2011	105	12.25	12.86
6.	CPF-248	2013	113	12.71	14.32

OVERALL IMPACT IN PUNJAB

Comparison	1999-00	2013-14	% increase
Area (000 ha)	672.10	756.75	12.59
Production (million tones)	25.00	43.70	74.80
Yield (tones/ha)	37.20	62.60	68.28
Recovery (%)	7.82	9.92	26.85

Source: PSMA Report 2013 & Crop Reporting Service, Punjab, 2013-14

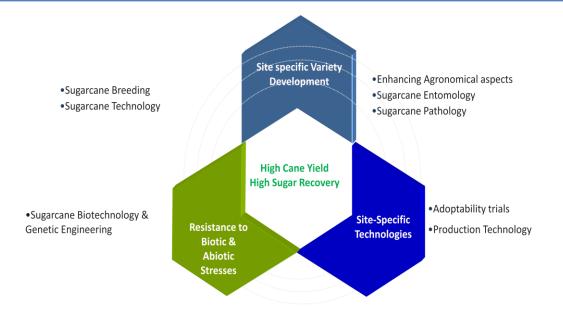
FUTURE STRETEGIES

FUTURE VARIETIES OF SRI, FSD

Sr. #	Name of clones	Av. Yield (t ha ⁻¹)	Yield potential (t ha ⁻¹)	Sugar Recovery (%)	Remarks
1.	CPF-249 (S2003-US 704)	107	135	12.80	Medium
2.	CPF-250 (S2003-US 127)	106	125	12.60	Early
3.	S2003-US 633	105	130	13.50	Early
4.	S2003-US 778	105	130	12.45	Medium
5.	S2005-US 54	107	135	12.60	Early
6.	S2006-US 272	107	135	12.60	Early
7.	S2006-US 658	106	125	12.40	Medium

INTERNATIONAL COLLABORATION

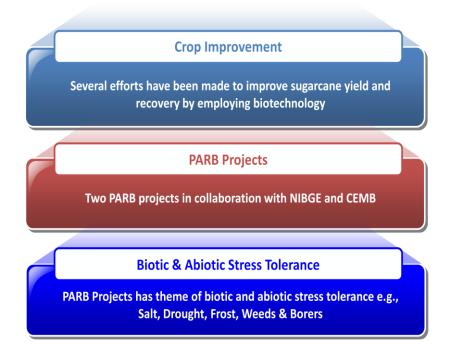
- Sugarcane Field Station, Canal Point, USA
- Sugarcane Research Institute, Sri Lanka
- Philippine Sugar Research Institute, Philippine
- Mauritius Sugar Industry Research Institute, Mauritius
- South African Sugarcane Research Institute, South Africa
- Bangladesh Sugarcane Research Institute (BSRI), Bangladesh
- West Indies Central Sugar Cane Breeding Station, Barbados


FUTURE THREATS FOR SUGARCANE

BIOTIC STRESSES

ABIOTIC STRESSES

WATER RESOURCES


FUTURE STRATEGIES

BIOTECHNOLOGY IN SUGARCANE

Abiotic Stresses Salinity Drought Frost Biotic Stresses Borers Weeds

SUGARCANE GENETIC ENGINEERING

PARB PROJECTS AT SRI

Title	Estimated cost (Rs. Millions)	Status
Sugarcane plant improvement through traditional and modern breeding technologies	27.836	On-going
Genetic Improvement of Sugarcane for herbicide and borer resistance	22.350	On-going
Development of transgenic sugarcane (Saccharum officinarum L.) against major abiotic stresses	19.587	Completed

PARB PROJECTS NO 163

Sugarcane plant improvement through traditional and modern breeding technologies

	Objectives	
	Import of Cane Germplasm	
	ONA Fingerprinting at Faisalabad	
FAISALABAD	Breeding of SRI varieties at Sri-Lanka	
	Fuzz Production for High Yield & Recovery Varieties	

COLLABORATION

- Shakarganj Sugar Research Institute, Jhang
- > Agricultural Biotechnology Research Institute, Faisalabad
- Sugarcane Research Institute, Uda Walawe, Sri-Lanka

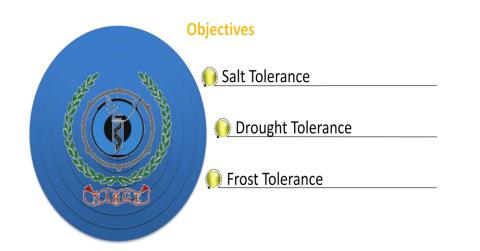
ACHIEVEMENTS

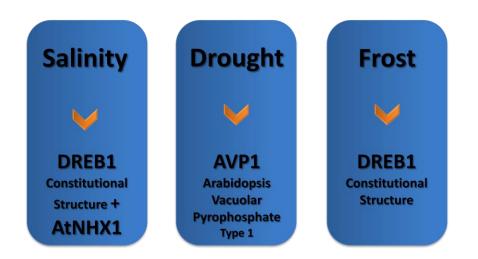
- $\sqrt{}$ Breeding at SRI, Sri-Lanka, 30 varieties of SRI, Faisalabad, 30 varieties of SSRI, Jhang and 30 varieties of SRI, Sri-Lanka were selected based on genetic profiling at ABRI, Faisalabad
- $\sqrt{}\,$ More than 500 crosses have been received from SRI, Sri-Lanka, 50 crosses from South Africa
- $\sqrt{}$ 20 genotypes were exchanged with Philippines and 10 genotypes were exchanged with Mauritius. 34 genotypes were exported to Sri-Lanka during 2014
- $\sqrt{}$ More than 80,000 seedlings of 293 crosses have germinated, singled and transplanted during 2013-14
- $\sqrt{}$ Zonal trials of 9 future lines along with 3 standard varieties were planted at 11 locations across Punjab. Three clones performed better than standard varieties

GROWING SEEDLINGS FROM CANE FUZZ – A BASE FOR NEW VARIETY EVOLUTION

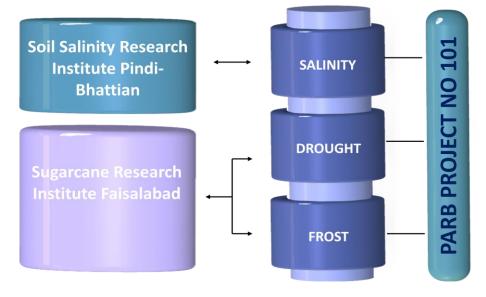
SEEDLINGS RAISED FROM FUZZ IMPORTED FROM MAURITIUS

SEEDLINGS RAISED FROM FUZZ IMPORTED FROM USA


SEEDLINGS RAISED FROM FUZZ IMPORTED FROM SRI-LANKA



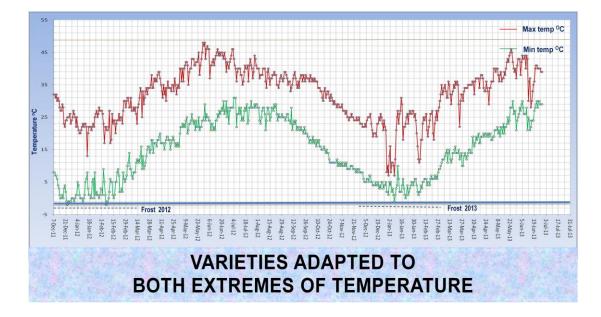
PARB PROJECTS NO 101


Development of transgenic sugarcane (Saccharum officinarum L.) against major abiotic stresses

PARB PROJECTS NO 101 RESPONSIBLE GENES

PARB PROJECTS NO 101 FIELD TRIALS

SALT TOLERANT VARIETIES

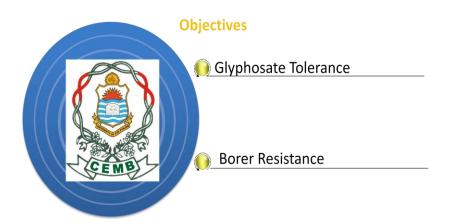


DROUGHT TOLERANT VARIETIES

Water - a scarce commodity

Costly pumping of water due to rising cost of diesel & load-shedding

CLIMATE CHANGE



ACHIEVEMENTS

- $\sqrt{}$ Three irrigation levels of 100%, 80% and 60% were applied to 110 clones of CPF-248, CPF-246, HSF-240 and CSSG-668. Seventy seven (77) clones of four varieties performed better on 60% and 80% irrigation
- $\sqrt{}$ For frost tolerance, 321 clones of CPF-248, CPF-246, HSF-240 and CSSG-668 were tested. Eighty three (83) were selected based on their comparative performance and sown for further testing
- $\sqrt{}$ The salinity tolerance experiment consists of 91 clones of CP-248 CPF-246, HSF-240 and CSSG-668 sown at SSRI, Pindi Bhattian. All the clones were promoted for second year testing

PARB PROJECTS NO 193

Genetic Improvement of Sugarcane for Herbicide and Borer Resistance

PARB PROJECTS NO 193 RESPONSIBLE GENES

Borers CEMB-BT for resistance against Sugarcane Borers

VARIETIES RESISTANT TO PESTS AND DISEASES

Control measures are not always available or accessible

Pesticides are costly and their use pose environmental threat and human health hazards

BIOLOGICAL CONTROL

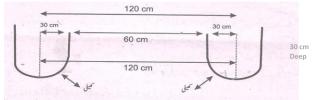
- ✓ Safe and efficient
- ✓ Long term control
- ✓ Environment friendly
- ✓ Cost effective

Trichogramma for control of sugarcane borers

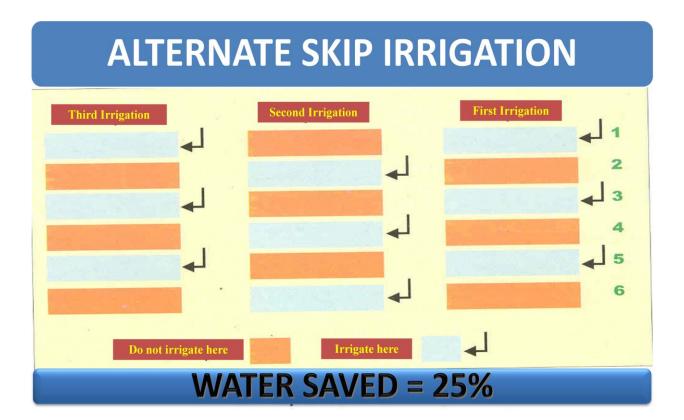
Chrysoperla for control of whiteflies

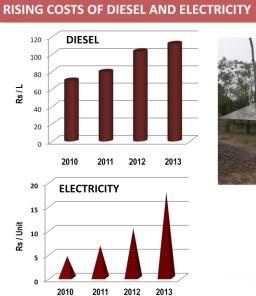
REDUCE COSTS OF PRODUCTION

• IRRIGATION (Improve WUE)

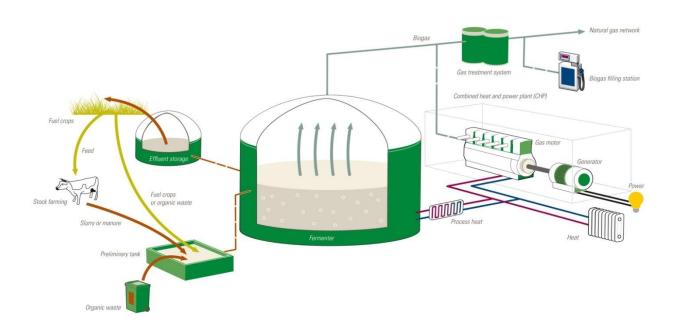


 HARVESTING (Reduce Losses)


DEEP TRENCH PLANTING TECHNIQUE



SOLAR ENERGY—RENEWABLE ENERGY



SOLAR POWERED TUBEWELL

BIOGAS - RENEWABLE ENERGY

STRESS MANAGEMENT FOR FARMERS

- >Use of biotic & abiotic stress tolerant approved varieties through Biotechnology
- >Use of organic fertilizer sources to reduce cost of production
- ➤Use of water conservation technologies
- >Use of farm machinery to reduce labor cost to enhance precision & efficiency

>Availability of subsidized farm implements, solar powered tube wells, bio-gas plants, and other inputs

STRESS MANAGEMENT FOR MILLERS

- Varietal Development Program at mill level
- Agro-meteorology studies for site specific variety development
- Establishment of model seed farm at mill level
- Production of organic fertilizer from filter cake
- Strengthening of quality control laboratory

BIO-COMPOSTING

VALORIZATION OF MILL BY-PRODUCTS AND ANIMAL WASTES (Pressmud, Ash, Molasses, Manure)

VALORIZATION OF SUGARCANE BIOMASS

Contribution of Sugarcane

- ✓ Enhanced biomass production
- ✓ Co-generation

FUTURE STRATEGIES

Continuity of fuzz production from Sri-Lanka of desired characteristics

Varietal exchange program with U.S.A., Brazil, Mauritius, Australia

Import of elite germplasm from U.S.A., Brazil, Australia, Thailand, etc.

Evaluation of site specific varieties

Development of site specific production technology

Establishment of quarantine station at Pail, Murree

Contd...

FUTURE STRATEGIES

Establishment of Sugarcane Breeding Institute in Coastal area

Establishment of Cane Seed Production Farm at Chak Jhumra

Sugarcane maximization program at mill level

ESTABLISHMENT OF SUGARCANE RESEARCH & DEVELOPMENT BOARD

MEDIUM TERM OBJECTIVES (5 YEARS)

Target:Av. Cane Yield: 90 t ha-1

Av. Sugar Recovery: 11.00 %

- Approval of 3 to 5 cane varieties from existing germplasm that are superior to varieties in vogue
- Establishment/Strengthening of infrastructure for Sugarcane Research and Development in Punjab
- Aggressive efforts in extension work directly with farmers and through sugar mills to attain Yield and Recovery objectives
- Extra emphasis on education with respect to water use efficiency

Contd...

LONG TERM OBJECTIVES (10 YEAR)

Target: Av. Cane Yield: 110 t ha⁻¹

Av. Sugar Recovery: 13 %

- Significantly expand and strengthen Sugarcane breeding and selection program
- Approval of site-specific varieties and development of production technology for different districts of Punjab
- Production of true seed of desired characteristics in Pakistan
- High fiber variety evolution for co-generation

Contd...

MEDIUM TERM OBJECTIVES (5 YEARS)

Target: Av. Cane Yield: 90 t ha⁻¹

Av. Sugar Recovery: 11.00 %

- Site-specific studies in different agro-ecological zones for variety development and productivity enhancement at mill level
- Extensive efforts for development of seed farms for newly approved varieties
- Valorization of sugar mill by-products for benefit of sugarcane farmers
- Strengthening of international linkages and upgrading subject expertise in Punjab

LONG TERM OBJECTIVES (10 YEAR)

Target: Av. Cane Yield: 110 t ha⁻¹

Av. Sugar Recovery: 13 %

- Capacity building of scientists
- Introduction of Genetically Modified (GMO) sugarcane varieties tolerant against abiotic stresses like frost, drought, salinity and biotic stresses like disease and insect pests
- Micro-management practices to enhance productivity
- Farm mechanization for sustainable sugarcane production

